小学数学思想方法有哪些实践中如何培养?数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。今天,就给大家带来数学有效教学的方法。
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。
[图片0]
2方法一
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
3、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
3方法二
1. 符号化思想的概念。
数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。
2. 如何理解符号化思想。
数学课程标准比较重视培养学生的符号意识,并提出了几点要求。那么,在小学阶段,如何理解这一重要思想呢?
3. 符号化思想的具体应用。
数学的发展虽然经历了几千年,但是数学符号的规范和统一却经历了比较慢长的过程。如我们现在通用的算术中的十进制计数符号数字0~9于公元8世纪在印度产生,经过了几百年才在全世界通用,从通用至今也不过几百年。代数在早期主要是以文字为主的演算,直到16、17世纪韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。
4.符号化思想的教学。
符号化思想作为数学最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。要创设合适的情境,引导学生在探索中归纳和理解数学模型,并进行解释和应用。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。
4方法三
1、对应的思想方法。 对应是人们对两上集合元素之间的联系的一种思想方法。为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。
2、数形结合的数学思想方法。 数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。用图解法分析问题就是运用这种方法。
3、可逆思想方法。 它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
4、符号化数学思想方法。 数学的一个突出特点是符号加逻辑。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。直观形象地引导学生掌握表示大小关第的符号,从中渗透符号化数学思想方法。