在学习数学的时候,我们必须学会如何掌握数学知识?掌握数学技能,发展数学能力,以及养成良好的数学心理品质,从掌握数学学习方法进而形成综合学习的能力。今天小编整理了一些数学新方法,希望对大家有帮助。
1.严格遵守思维规律,养成严谨的思维习惯。
严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误,或者当解不出题时就乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证等这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。
2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。
老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。以上是数学学习的一些方法,供同学们参考。
[图片0]
2方法一
1.计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
2.理解问题是解题思维活动的开始。
3.反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
4.转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
5.学生通过《高中数学考点题型与解题方法》一书的学习可以对高考题型有一个明确的解题思路,能够掌握解题方法和答题技巧,让学生见到数学题不再犯怵,而是能下手去做题,能高效率的成功解题。
3方法二
1、简单化已知条件:有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
2、分类考察讨论:在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
4、恰当分解结论:有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
4方法三
变式思维中,对称思想是很重要的一种。对称思想往往可以解决很多问题。举个现实生活中的例子来说,日本一个生产味精的企业有段时间利润一直上不去,就召开了一个公司内部的研讨会。会上大家拿出了很多方法,比如降低成本等等,但因效果不明显,都没有被采用。后来进行消费者调研时,有个家庭主妇说,味精都是瓶装的,上面有很多小眼儿,可以增大小眼儿,这样做饭时大家就用得多了,用得多了,销售量就上去了
学数学的过程中,一道题从已知走向结果、从结果走向已知也都体现了思维的对称性。有道很经典的题目:1/2+1/4+1/8+…+1/256。可以从前往后算,1/2+1/4=3/4,3/4+1/8=7/8……,发现规律后就会知道,最后答案等于255/256,也可以在式子最后加一个1/256(这也是构造思想的体现),从后往前算,得出得数1,然后再减去多余的1/256。这都是思维对称性的体现。