数学思想方法的源头:《几何原本》思想方法的体例及特点,封闭的演绎体系《几何原本》就是一个最早的标准的演绎体系:由少数不定义的概念,如点售线、平面等等,和不证明的命题——公理与公设——出发,在需要的地方,定义出相应的概念,按着一定的逻辑规则,演绎出所有其他命题来。在《几何原本》的演绎体系中,公理是最一般的命题,它们是一系列演绎推理的前提,这个体系的所有其他命题,都是从公理(通过适当的定义)推导出来的。
除了推导所需要的逻辑规则外,《几何原本》的由一系列公理、定义、定理等构成的数学理论体系,原则上不必依赖于其他东西。当然,在实际上,《几何原本》在某些地方背离了这个原则:证明某些命题时运用了公理和逻辑规则之外的“直观”。但是,那只是个别的地方,并不影响体系的大局;而且,正是作为《几何原本》的“缺陷”而受到了人们的指责的,后来的人们按欧几里得的原意,不断地在体系中排除直观,得到更严格 的数学理论体系,其指导思想正是由《几何原本》开始的。由于《几何原本》的这种思想原则和结构方式,从实质上说,《几何原本》是一个比较完整的、相对封闭的数学理论体系。
[图片0]
2数学思想方法一
数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
3数学思想方法二
数学思想是一类科学思想,但科学思想未必就单单是数学思想。例如,分类思想是各门科学都要运用的思想(比方语文分为文学、语言和写作,外语分为听、说、读、写和译,物理学分为力学、热学、声学、电学、光学和原子核物理学,化学分为无机化学和有机化学,生物学分为植物学和动物学等.中学生见到的最漂亮的分类应该是在学习哺乳纲动物时所出现的门(亚门)、纲(亚纲)、目、属、科、种的分类表,它不是单由数学给予的。只有将科学思想应用于空间形式和数量关系时,才能成为数学思想。如果用一个词语“逻辑划分”作为标准,那么,当该逻辑划分与数理有关时(可称之为“数理逻辑划分”),可以说是数学思想;当该逻辑划分与数理无直接关系时(例如把社会中的各行各业分为工、农、兵、学、商等),不应该说是运用数学思想。同样地,当且仅当哲学思想(例如一分为二的思想、量质互变的思想和肯定否定的思想)在数学中子以大量运用并且被“数学化”了时,它们也可以称之为数学思想。
基本数学思想包括:符号与变元表示的思想,集合思想,对应思想,公理化与结构思想,数形结合的思想,化归的思想,对立统一的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想(或说无限逼近思想)等。它有两大“基石”—符号与变元表示的思想和集合思想,又有两大“支柱”—对应思想和公理化与结构思想。有些基本数学思想是从“基石”和“支柱”衍生出来的。
4数学思想方法三
小学数学思想方法的思考:函数是近代数学最基本的概念之一,在数学发展过程中起着十分重要的作用,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数等)都是以函数为中心展开研究的。在中学数学中,函数起着主导作用,处于核心地位。作为初中数学四大学习领域之一的数与代数,其“四大主干”——数、式、方程(不等式)、函数都可以用函数来 “统帅”:数集的发展是为函数的定义域和值域研究作准备的;“式”是函数关系的重要表达形式,“式”也可以看作是关于式中某个(或某些)字母的函数;方程或不等式的解集则可以理解为使左右两个函数值相等或不等的公共定义域的子集。高中数学的许多内容都与函数密切相关,譬如,数列是以自然数集或其子集为定义域的函数;微积分初步研究内容主要是初等连续函数的一些性质;解析几何研究的曲线与方程其实是一类隐函数。
初中阶段的函数概念是从运动变化和联系对应的角度加以定义的,即函数概念的“变量说”(高中阶段为“对应说”、大学阶段为“关系说”),这个定义对一个变化过程中的两个变量之间的关系进行了描述,因此,首先应明确什么是变量,什么是常量。在此基础上,揭示函数概念的内涵:在同一变化过程中的两个变量之间存在这样的关系——一个变量的变化会引起另一个变量也随之变化,而且这个变化之间存在单值对应的关系。“变量、常量”蕴含着分类的思想,“函数” 蕴含着变化的思想和对应的思想。
以上就是数学思想方法探究的相关建议,希望能帮助到你!

 
