初中数学中蕴含的数学思维方法很多,最基本最主要的有:转化的思维方法,数形结合的思维方法,整体的思维和方法等。对应的思维和方法:在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思维,这样既有助于培养学生用变化的观点看问题,又助于培养学生的函数观念。
数形结合的思维和方法:数形结合思维是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思维在数学研究和数学应用中的重要性。
整体的思维和方法:整体思维就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思维方法。整体思维在处理数学问题时,有广泛的应用。
[图片0]
2数学思维方法一
数学直觉是一种直接反映数学对象结构关系的心智活动形式,它是人脑对于数学对象事物的某种直接的领悟或洞察。它在运用知识组块和直感时都得进行适当的加工,将脑中贮存的与当前问题相似的块,通过不同的直感进行联结,它对问题的分解、改造整合加工具有创造性的加工。
数学直觉,可以简称为数觉(有很多人认为它属于形象思维),但是并非数学家才能产生数学的直觉,对于学习数学已经达到一定水平的人来说,直觉是可能产生的,也是可以加以培养的。数学直觉的基础在于数学知识的组块和数学形象直感的生长。因此如果一个学生在解决数学新问题时能够对它的结论作出直接的迅速的领悟,那么我们就应该认为这是数学直觉的表现。
数学是对客观世界的反映,它是人们对生活现象的世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念是基于直觉,数学在一定程度上就是在问题解决中得到发展,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。
[图片1]
3数学思维方法二
数学思想方法又是处理数学问题的指导思想和基本策略,是数学的灵魂。因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高思维水平,真正懂得数学的价值,建立科学的数学观念,从而发展数学,运用数学的重要保证。
所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,他在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想;是在数学地提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。初中数学中常用的数学思想方法有:化归思想方法、分类思想方法、数形结合的思想方法、函数思想方法、方程思想方法、模型思想方法、统计思想方法、用字母代替数的思想方法、运动变换的思想方法等。
在初三复习时,特别对章节复习或总复习时,将统领知识的数学思想方法概括出来,增强我们对数学思想方法的应用意识,从而有利于我们更透彻地理解所学的知识,提高独立分析、解决问题的能力,培养我们的创新意识,进而提高我们的思维品质。
[图片2]
4数学思维方法三
重视数学基本问题和基本方法的牢固掌握和应用,以形成并丰富数学知识组块。直觉不是靠“机遇”,直觉的获得虽然是有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会迸发出思维的火花。所以对数学基本问题和基本方法的牢固掌握和应用是很重要的。所谓知识组块又称知识反应块。它们由数学中的定义、定理、公式、法则等组成,并集中地反映在一些基本问题,典型题型或方法模式。许多其他问题的解决往往可以归结成一个或几个基本问题,化为某类典型题型,或者运用某种方式模式。这些知识组块由于不一定以定理、性质、法则等形式出现,而是分布于例题或问题之中,因此不容易引起师生的特别重视,往往被淹没在题海之中,如何将它们筛选出来加以精练是数学中值得研究的一个重要课题。
在解数学题时,主体在明了题意并抓住题目条件或结论的特征之后,往往一个念头闪现就描绘出了解题的大致思路。这是尖子学生经常会碰到的事情,在他们大脑中贮存着比一般学生更多的知识组块和形象直感,因此快速反应的数学直觉就应运而生。
例:已知 ,求证:分析 观察题目条件与结论的式结构后会闪现两个念头:(1)在a、b、c为任意值时,等式通常是不成立的,从而在a、b、c之间存在比题给条件更简单的关系;(2)作为特例考虑,显然三个数中有两个互为相反数时,条件与结论均成立,这意味着条件式子含有因式(a+b)或(b+c)或(c+a),由于轮换对称性,则必含有(a+b)(b+c) (c+a)于是数学直觉形成,只需化简条件至既定目标即可推得结论。这个直觉来源于过去的运算经验—知识组块,也来源于对题给的图式表象的象质转换直感。
以上就是组合数学的思维方法的相关建议,希望能帮助到您!
