勤学思合作机构>

勤学思培训网CSDPAL

欢迎您!
朋友圈
机构未认证 全国统一学习专线 8:00-21:00

位置:勤学思培训网CSDPAL » 培训新闻 » 资格考试 » 金融 » 期货从业资格 » 终于知道小学数学如何培养抽象思维

终于知道小学数学如何培养抽象思维

发布时间:2023-02-03 10:20:06
1 小学 数学如何培养抽象思维

小学数学如何培养抽象思维?新课程教材使用的过程中因为直观操作强调较多,有时则忽视了抽象的过程与结果,对由形象到抽象的过程认识与研究不够,从而实践上很不到位。下面,小编给大家带来数学思维训练技巧。

引导学生学会逐步的抽象

首先教师在教学中要注重培养学生的抽象思维能力。抽象只有摆脱具体形象,才能使思维用算法化的方式得出新的结果。如一年级学习“9加几”的加法,当学生有一圈十、凑十的实物操作基础后,教师必须引导学生回到算式,抽象出算法,要算9加几的加法,先要想9加几等于10,再把第二个加数进行分解,最后再进行9+1+( )的计算。

其次抽象除了可以使思维概括、简约、深刻以外,还有发现真理的功能。所以教师还要指导学生用抽象的方法解决问题。在学习中可以表现为由原型匹型到抽象提升,如六年级有这样一类题:“一批布,做上衣可做20件,做裤子可做30条,这批布可做多少套衣服?(一套衣服是一件上衣和一条裤子)”“体育委员为班组购买文体用品。他带的钱正好可以买15副羽毛球拍或24副乒乓球拍。如果他已经买了10副羽毛球拍,那么剩下的钱还可买多少副乒乓球拍?”这些题都可以抽象成工程问题,通过抽象的方式解决问题。

[图片0]

形式运算——抽象思维训练的好途径

有这样一道题:“一个正方体削成一个最大的圆柱,这个圆柱的体积是正方体体积的百分之几?”学生1的解法是:假设正方体的棱长为6厘米,那么圆柱的底面直径和高都是6厘米。π×(6÷2)2×6=54π(立方厘米),6×6×6=216(立方厘米),54π÷216=π÷4=%。学生2的解法是:所正方体的棱长看成a。π×(a÷2)2×a=πa2/4×a=πa3/4(立方厘米),a×a×a=a3(立方厘米),πa3/4÷a3=π/4=%。两种方法都得到了正解的答案,但是第一种是通过举具体的数据进行运算,第二种则是用字母代替数进行运算,即参数法。显然第二种方法具有更高的抽象水平,也更具有概括性。但是能想到第二种方法的学生只有六七个。

运算思维结构可以分为两个水平,一个是具体运算水平,一个是形式运算水平。根据皮亚杰关于思维发展阶段的划分,儿童约从7岁到11岁为具体运算阶段,这个阶段的运算一般还离不开具体事物的支持。约从11岁到15岁为形式运算阶段,形式运算就是命题运算思维,这种运算可以离开具体事物,根据假设来进行。小学里已学习了用字母表示数和简单的一元一次方程,六年级学生的运算思维水平可以脱离具体事物与具体数据进行形式的代数的运算,也就是说已经具备了形式运算的基础与可能。而在小学阶段解决数学问题中有时用代数法更具有普遍性、概括性和说服力,同时也为初中学习代数做铺垫打基础,所以作为小学高年级的教师应该把培养学生形成运算的能力作为教学的一个内容。

2数学思维训练技巧一

训练思维语言,理清思维过程

小学生数学思维的形成与发展是借助语言来实现的,数学语言的发展水平的高低,在一定程度上影响着数学思维的发展。加强学生思维活动的条理性,语言表达的准确性、完整性训练,对于学生准确掌握数学知识、提高教学效率具有不可估量的作用。语言和思维是分不开的,人们借助语言思考问题,表达思想,语言是思维的外在表现。所以语言能力的启蒙培养有助于抽象思维能力的提高。

如在教学中,我们常常要要求学生先思后说,能用完整的句子表达,能正确使用数学语言,注意严密规范等等。这样有要求、有顺序地启蒙培养,持之有恒,定有成效。

[图片1]

构建习题框架,综合思维训练

课堂中构建习题框架,不失为一种比较好的思维训练法。如将有联系的内容、易混淆的、有互逆关系的题目放在一起成组的出现,让学生区别、辨认,可以提高学生的分析判断能力。

例如,在教学小数四则混合应用题这个内容时,题目种类多,题目之间又有很多地方相似,不容易区分计算方法。在教学这部分内容时,我设计了一组“一题多变”的练习题目。这组练习题讲的事情基本相同,已知数量和所求数量之间有着内在的联系,得数可以互相参照。这种练习,可以用较少的时间做较多类型的题目,既减轻了学生的负担,又加深了学生对各类题目的理解。

3数学思维训练技巧二

要重视形象思维.

首先在教学中教师要尽可能地运用形象,其次还应指导学生养成用直观化策略解决问题的习惯. 例如,到一年级数学组走走,听老师们说前一天有老师已经教学了两位数加整十数、一位数的计算,上完课的老师反映学生对两类加法容易混淆,学生掌握得不好. 于是我便和老师们一起分析对策:在主题图教学之后分四步走,帮助学生辨别两类题,体会“相同计数单位的数相加”.

第一步:让学生在计数器上拨珠计算,用计数器帮助对比、区分,如25 + 20,25 + 2,44 + 50,44 + 5,等等. 第二步:只拨第一个加数,想加第二个加数的拨珠动作,再说出得数. 第三步:计数器拿走,想象两数相加的拨珠动作,再说出得数. 第四步:看算式直接说出得数. 其他教师在教学中均采用了这样的四步,先教的那位老师也用这四步进行了补救,效果明显提高,学生基本上没有错误. 直观可以让抽象的语言文字变成看得见的形象,可以降低学生思维的难度,可以帮助学生很好地理解知识、建构知识.

形式运算――抽象思维训练的好途径.

有这样一道题:“一个正方体削成一个最大的圆柱,这个圆柱的体积是正方体体积的百分之几?”学生1的解法是:假设正方体的棱长为6厘米,那么圆柱的底面直径和高都是6厘米,π × (6 ÷ 2)2 × 6 = 54π(立方厘米),6 × 6 × 6 = 216(立方厘米),54π ÷ 216 = π ÷ 4 = %. 学生2的解法是:把正方体的棱长看成a,π × (a ÷ 2)2 × a = × a = (立方厘米),a × a × a = a3(立方厘米), ÷ a3 = = %. 两种方法都得到了正解的答案,但是第一种是通过举具体的数据进行运算,第二种则是用字母代替数进行运算,即参数法. 显然第二种方法具有更高的抽象水平,也更具有概括性,但是能想到第二种方法的学生只有六七个.

运算思维结构可以分为两个水平,根据皮亚杰关于思维发展阶段的划分,儿童从7岁到11岁为具体运算阶段,这个阶段的运算一般还离不开具体事物的支持;从11岁到15岁为形式运算阶段,形式运算就是命题运算思维,这种运算可以离开具体事物,根据假设来进行. 小学里已学习了用字母表示数和简单的一元一次方程,六年级学生的运算思维水平可以脱离具体事物与具体数据进行形式的代数的运算,也就是说已经具备了形式运算的基础与可能. 而在小学阶段解决数学问题中有时用代数法更具有普遍性、概括性和说服力,同时也为初中学习代数做铺垫打基础. 所以作为小学高年级的教师应该把培养学生形成运算的能力作为教学的一个内容.

4数学思维训练技巧三

提高思维速度,培养抽象思维敏捷性

高中数学知识十分抽象复杂,我们高中生要高效地完成数学知识的学习以及提高数学解题能力,必须提高思维的速度,在学习和解答问题时除了要有效运用抽象思维以外,还要重视提高抽象思维的敏捷性,当思维敏捷度大大提升,高中生如果在数学知识学习或者解题中出现问题,就能够运用敏捷的抽象思维,来适应迫切的学习情况,就能够运用敏捷的抽象思维,来适应迫切的学习情况,并积极全面地对问题进行探究和综合考虑,从而保证判断和决定的正确性和科学性,进一步提高数学学习效率和质量。

抽象思维敏捷性的培养必须通过大量的数学练习来实现,因此,高中生必须加强对自身的日常学习训练,并在练习当中对抽象思维进行完善和发展,通过强化练习和熟能生巧的形式来进一步锻炼思维的敏捷度,并从中吸取经验教训,从而提高抽象思维能力,满足高中抽象数学知识学习的需求。例如,高中生可以在学习新课前主动选择数学练习题,并对自己的解题时间进行规定,以此来巩固数学知识,锻炼和提高解题速度;通过对日常解题技巧的总结,可以对常用数字进行记忆如二十以内自然数的平方数和立方数、常用角的三角函数等。

加强变式学习,培养抽象思维灵活性

高中数学知识的学习需要灵活地运用抽象思维,这就需要培养抽象思维的灵活度,改变思维功能僵化的问题。高中生在以往的数学思维训练中更多地注重对多种题型的归纳和总结,并总结不同题型的固定解题和思维方法,在解题时通过套用固定思维模式的方法进行解题,而在对自身思维训练中只是在固有模式下重复性的练习,使得自身独立探究和思索问题的机会大大减少,最终导致数学思维缺乏,且抽象思维的灵活性和应变能力得不到有效提升。

在数学学习中即使是针对同一道数学题,也要从不同的角度对问题的解题思路进行思考,积极探究多元化的解题方法,进一步拓宽思维联想空间,实现举一反三。例如,在学习数学抽象概念时,为了加强对抽象概念的理解和应用,高中生可以将抽象的概念语言用自己的语言描述出来;在学习数学公式时可以有意识地将公式进行不同的变形,并通过解答练习题的方式来提高对公式变形的应用;在做练习题时要积极探寻多样化的解题思路,有效提高抽象思维灵活性。

更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 勤学思培训网CSDPAL 详细了解
咨询电话:

还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱 的培训课程,省时又省力!

微信访问

#tel_020#