初中数学如何培养思维构建?初中阶段的数学教育要体现基础性、普及性和发展性,要面向全体学生,实现人人学有价值的数学,都能获得必需的数学;不同的人在数学上得到不同的发展。下面,小编给大家带来数学思维训练技巧。
适当时机进行统摄思维训练以培养学生的创新性思维
数学内容教学到一定阶段后,有必要进行统摄思维训练,以增强学生的创新思维意识及能力。统摄训练是对学过的数学相关的概念、定理、单元章节等进行系统的复习,并且进行技巧性的总结归纳,掌握知识的内在联系,理顺知识的脉络,编织良好的知识网络。采用统摄培训教学方法主要是为学生创新性思维发挥打造良好的基础。
针对性地进行逆向思维训练以培养学生的创新意识
在兵法上强调迂回,其实生活中很多事情亦如此。当一个问题在正面难以找到突破口时,就应该从其他的角度下手,冲破思维定视,间接求解,利用正难则反的思维。数学中存在着不少的证明题,就可以利用这一思维,在数学教学中教师就应该有针对性的设置逆向思维的题目,引导学生灵活地转换观察和分析数学问题的角度,让学生充分看到逆向思维的功能。
[图片0]
恰当地进行批判性思维以培养学生的创新意识
批判性思维是学生对自我解题思路的冷静分析,对解题结果的重新审核。在数学解题中采用批判性思维就能够不断对解题的思路及结果进行完善,不断找到新方法、新思路。批判性思维不仅仅是对学生自己解题思路的审核,而且能够科学的分析教师教学的一切,打破唯书唯师论,学生经过自己对问题或者解题思路进行系统的考量,更能够进一步的接受所学知识。为了能够让学生有不少机会进行批判性思维锻炼,在数学教学过程中,教师可以有意识地适当出一些改错题或判断题等题型来发展学生思维的批判性,加强创新意识的培养。
2初中数学教学中如何培养学生创新思维
有机地进行集中思维与发散思维训练以提高学生的创新意识
在数学教学中进行集中与发散思维训练,针对某个知识点或者是某个问题进行发散,对于散乱的知识点进行集中,总结。创新性思维基本成分包括集中性与发散性思维,所谓集中性思维就是利用已有的信息按照一般的单一模式,得出一个正确的答案。
发散性思维是根据某个知识点沿着不同的方向去思考、探索,联想到更多的解决问题方案,这些方案不一定都具有价值,需要评判、筛选、提炼、升华。集中性思维是发散思维的起点和归宿,两者相辅相成,要培养学生的创新意识就不能够单单从集中性思维或者发散性思维进行培养,而应两者进行有机地结合,才能发挥效用。
[图片1]
不时地进行直觉思维训练以培养学生的创新意识
数学直觉思维是建立在对客观数学知识掌握及熟悉的基础上发生的,是平时数学知识的积累与沉淀的一种良好反应,表现在数学问题上就是没有严格的逻辑推理、没有进行理论推导时就能够感觉到问题的结论。直觉思维越过中间环节,不像逻辑思维要经过严格的论证与推理等中间环节,就像英语学习中所谓的“语感”。
在数学考试中,需要强烈的这种直觉思维,因为有着良好的直觉思维能够形成良好的解题思路,不但准确率高,而且节约考试宝贵的时间,体现解题的高效率。因此在教学中,首先,教师就应该不时地对学生进行示范,让学生体会到直觉思维的魅力;其次,教师在教学中多设置直觉思维的题目,在学生毫无准备下突问学生用直觉思维解决问题;最后,要充分运用启发式教学,有效地发展学生直觉思维。
3中学如何培养学生的联想思维
保护学生的质疑,并提倡多角度联想
在数学教育中,我们在不知不觉中迷信权威,尤其是老教师,他们长期的教育,使知识点明了化,此时,学生如果提出与内容没有直接联系的问题,教师往往会否定他的发现。对于新教师,由于没有完全掌握课堂教学的变通,也容易否定学生的思维,例如,我在上黄金分割点的时候,讲到人的黄金分割点最好落在肚脐眼上,这时候的人看上去会感觉特别的舒服,此时,有个学生提出:老师,你的黄金分割点是落在肚脐眼上吗?当时,我觉得这个学生不太懂礼貌,怎么可以这么问我,于是,我就没有搭理他。
事后,我仔细的回想这个过程,其实,这个学生的问题很具有创造性,他能将书本知识立刻联想到实际,如果,我当时能够顺着学生的思维,立刻提问:如何才能知道我的黄金分割点是否落在肚脐眼上?如果不在,那又有什么办法可以弥补这个缺憾?与实际立刻相连,而且是学生自己的问题,容易激发学生的思考和兴趣。很多学生可能也有这样的疑问,只是碍于老师的权威,不敢轻言,此时,如果教师立刻否定学生的疑问,其他学生会庆幸自己的少言,同时,以后的教育中,学生会越来越沉默,思维也会逐渐狭隘,同时,一定程度上抹杀了学生学习的兴趣。保护学生的质疑,实际上是保护学生的联想动力,为他们的创新能力的激发提供保障。
提高教师自身素质,是联想思维培养的需要
思维的广阔性是联想教育的前提,在实施联想教育的过程中,除了数学学科之外,还涉及科学,语文,甚至绘画,童话教育等,这种跨学科的教育方法,对教师的要求更加突出,教师必须先有一桶水,才能在学生提出疑问,想法的时候,不至于不知所措。现在的学生由于家庭条件的不同,涉及的生活方式也不尽相同,而联想往往与生活密切相关,例如有些同学在计算平均数时,使用计算器,而有些同学则选择计算机,教师需要了解的内容更多。一个出色的教师,不仅需要丰富的知识,而且要有幽默的个性和亲和力,能够最大限度激发学生联想能力。
专业素质、非专业素质,都对教师提出了更高的考验,只有提高自身素质,才能给学生带去更多的灵感。教师需要有提出问题的能力,同时也要有解决问题,更深的挖掘问题,并对学生问题能够有正确的判断能力和正确的评价方式。如果缺少了其中的任何一项,操作过程中,就会存在缺憾,甚至收不到任何的效果。就如我前面教学黄金分割的一样,如果能够抓住问题,并适当表扬,学生的信心会大增,学习会更加主动。一旦错过,结果就完全不一样,学生掌握的知识没有主动的应用与实际,而且,学生的思维受到压制。因此,提高教师的素质也至关重要。
4如何培养初中生的数学思维能力
引导“一题多解”,培养学生思维的灵活性、深刻性
在数学教学中,很多数学问题从不同的角度,利用不同的知识可以得到不同的解法,而答案却相同。把学生从固定或单一的思维模式中解放出来,让学生养成灵活运用知识、拓展思维的解题思路,加深学生对所学知识的深刻理解,从而活跃了学生思维、沟通知识和方法间的联系。例如,在教学中就遇到这样的一道题:如图1,在△ABC中,AB=AC=5,BC=6,DB=2AD,过点D作DE⊥AC于点E,求DE的长。方法一:先作AF垂直于BC于F,利用等腰三角形的“三线合一”与勾股定理算出高AF=4,然后求出ABC的面积等于12,接着因为DB=2AD,所以AD=AB,而△ADC与△ABC同高,所以ADC的面积等于△ABC的面积的,从而求出△ADC的面积,然后利用三角形的面积计算公式求出DE的长。
方法二:构造方程来求出DE的长,作DF∥BC交AC与F(如图2),则△ADE∽△ABC,因为AD∶AB=1∶3,所以DF∶BC=AF∶AC=1∶3,从而可以求出AD,AF,DF的长,然后引导学生观察△ADF,发现这个三角形的三边确定,因此必定可以求出AF边上的高DE的长,设AE=x,则EF=-x,AD=,DF=2,分别在Rt△ADE与Rt△DEF中,利用勾股定理将DE用含有x的式子表示出来,然后以DE为“桥梁”构建方程解出x,从而可以求出DE的长。在多解性题目中,必须注意解法的合理性。注意比较多种解法的优缺点,有助于培养学生思维的灵活性、深刻性,不断提高解题技巧。
运用归纳猜想法,培养学生思维的创新性
在教学中,教师要善于激发学生的求知欲,鼓励学生打破思维定式,打破形式逻辑的束缚,引导学生通过实验、观察、归纳出规律,进而大胆猜想,将对学生的创造性思维能力培养寓于猜想过程中。在七年级的数学,学生已掌握了平面内两条直线相交有且只有一个交点。在此基础上提出:(1)平面内三条直线两两相交有几个交点?(2)四条直线两两相交有几个交点?n条呢?没有经过归纳猜想法训练的学生很难回答这个问题,我引导学生观察:直线条数与交点数的关系,进而归纳猜想。
