数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。那么,小编就来给大家分享一些初中数学思想方法的建议吧!
数学方法是比较具体的,是具体数学思想得以实施的技术手段,数学思想是比较抽象的,属于数学观念的范畴。因此,在教学过程中,要通过加强学生对数学方法的掌握和运用来了解数学思想,在了解了数学思想以后,在处理类似数学问题的时候,可以运用数学思想对我们的求解过程进行指导。例如,我们在向学生讲授化归思想的时候,首先要通过一系列的习题,让学生对化归思想所体现出来的从未知到已知、从一般到特殊、从局部到整体的转化中了解和认识这一数学思想,然后,纵观初中数学的各章节内容,大多都体现了这一思想,因此,在处理有关数学问题的时候,要运用这一思想对求解的过程进行指导。让学生通过对数学方法的学习逐步领略数学思想的内涵,同时,用数学思想指导和深化数学方法的运用。
[图片0]
2方法一:对应的思想和方法
在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。
3方法二:分类的思想和方法
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
4方法三:整体的思想和方法
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
以上就是一些初中数学思想方法的相关建议了,希望对大家有所帮助!
