数学建模中常用的方法:类比法、二分法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。
这些方法可以解一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划、整数规划。
[图片0]
2数学模型方法分析
数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.
数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.
数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.
数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.
3数学建模需要学些什么
数学建模方法与应用:准备一些基本知识吧,比如线性规划、运筹学方面的东西、随即过程、微分方程的定性理论等等,技术方面学一学matlab、spss、stata、sas、maple、c/c++等等。 找一本关于数学建模的书看看吧,大概可以知道有些什么样的题目。 这样的书挺多的,写的大同小异。 不过建模竞赛书上所讲的东西都是些很基本的建模方法,真正建模竞赛的题目要综合运用这些方法来解决的。看这些书可以有一个初步的认识。真正什么是建模,大概只有你参加一次建模竞赛就能有体会了。
R软件。R是一款比较强大的软件,统计类的题目很多都需要用到R软件,所以负责编程的同学一定要在赛前好好研究R,最好可以熟练使用。
MATLAB 这几乎是一个无所不能的软件,基本上所有问题都可以通过它来实现,所以队员中一定要有人精通matlab。
SPSS,SAS 这两个软件都是统计类应用软件,SPSS用起来很方便也不需要敲太多程序,所以必要时选择SPSS也是个不错的选择。
4数学建模的主要步骤
第一、模型准备首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第四、模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。