勤学思合作机构>

勤学思培训网SZDFSL

欢迎您!
朋友圈
机构未认证 全国统一学习专线 8:00-21:00

位置:勤学思培训网SZDFSL » 培训新闻 » 资格考试 » 健康养生 » 保育员 » 终于明了高中数学思想与方法

终于明了高中数学思想与方法

发布时间:2023-02-09 20:59:52
1 高中 数学思想与方法

往往在进入高中以后,不少同学就不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。因为和初中数学相比,高中数学的内容多,抽象性、理论性强,因而不少同学进入高中之后很不适应,以下是朴新小编给大家带来了高中数学思想与方法。

[图片0]

2高二数学不等式的方法

解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

3高中的数学概念的学习方法

抓好基础。数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

制定好计划和奋斗目标。复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

严防题海战术,克服盲目做题而不注重归纳的现象。做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

归纳数学大思维、大策略。数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

4学好数学的方法

学习数学应该要在宏观上对其有一个整体的把握,总的来说,数学可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点知识内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。课本对于数学来说,也是很重要的。高考数学有20%的基础题目,只要花上一点点时间把课本好好看看,要拿下这些题易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题也不可能做得很好,毕竟这些都是基础啊。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维一定要清晰明了,是不太可能出现做出题目却不知是如何做对的情况的,因而基础知识十分重要。

其次,相当多的习题自然是必不可少的。在理解了基本的概念以后,必须要做大量的练习,这样才能巩固所学到的知识,加深对概念的了解。所谓熟能生巧,数学最能体现这句话的哲理性。数学的思维、解题的技巧,只有在做题中摸索,印象才会深刻,运用起来才会得心应手。当然,这并不是提倡题海战术,适量就可,习题做得太多,很容易产生厌烦情绪。最重要的还是选题,一定要选好题、精题。在这一方面,老师的建议是很值得考虑的,最好买老师推荐的参考资料。同时做题还要根据自己的实际情况。一般而言,要先做基础题,把基础打牢固,然后再逐步加深难度,做一些提高性的题目。每一个知识点都要做一定量的上难度的题来巩固,这样才能将其牢牢掌握做完每个题之后,要回头看一遍(尤其是难题),想想做这一题有什么收获,这样,就不会做了很多题却没有什么效果。

运算也是很重要的一个环节,与方法的重要性不相上下。培养一种发散性思维,寻求解题的多种方法,当然非常重要。但是,有一些同学,他们具有很强的思维能力,能够从多种角度思考问题,可是计算能力却不强,平时也不训练,考试时往往是找对了方法却算错了答案,非常可惜。的确,繁琐的运算是令人望而生畏的,但是,在运算过程中你将发现许多新的问题,而运算能力也就在训练中渐渐提高了。因而,学习数学方法要与计算并重。一方面,要重视做题方法的训练,从多角度、多方面去思考问题;同时,也要注意锻炼计算能力,注重计算的精确性,而不能偏向一方。

总结试卷。把专题复习的卷子和综合复习的卷子分门别类,每一份试卷都进行认真细致的总结,挑出其中含金量最高的题,同时,“旁征博引”,把曾经遇到过的相关的题目总结到一起,一道也不放过。这样总结下来,一定能对各类题型都能够了如指掌,对出题者的出题角度也有了准确的把握。通过对上百份试卷的细致归纳总结,很多同学的数学都有了大幅度的提高。需要强调的是在总结试卷的过程中一定要深入下去,千万不能走形式,只有深入方能有所收获。在深入的过程中不要在乎时间,有时候,在总结一道大题时,会把相关的题型总结到一起,这项工作其实是相当繁杂的,绝不等同于弄懂一道题。而做这项工作的收益也将是巨大的。所以,即使用一个晚上来做这件事也非常值得。千万不要心情急躁,看见别人一道接一道的做题而不安。

更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 勤学思培训网SZDFSL 详细了解
咨询电话:

还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱 的培训课程,省时又省力!

微信访问

#tel_020#