把知识串成“块”,形成知识网络。小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
2数学整理方法一
知识整理主要对所复习的内容进行分类归纳,有序整理,使其系统化。主要操作是先让学生初步进行典型练习,寻找发现规律,在此基础上将零碎的知识系统梳理、综合,从而上升为可感受的规律和学习方法。教师在这一环节要把握要领,精讲善导,生生、师生合作,在练习的基础上引导学生采用表格、提纲或图等形式把有关的知识、规律和方法整理出来。
比如:讲复合应用题时,应用题是一大难点,涉及类型较多,用到的数量关系也很多,这时我们就不应只是就题论题,而应教给学生一些分析应用题的方法。复合应用题解题方法就是分析法和综合法两种,要么从已知条件出发,推导出最后的问题;要么从问题出发,推到最原始的已知条件。再比如:列方程解应用题,我们可归纳几类,然后教会学生找等量关系的方法,这样就可把内容繁杂的知识归为几类,以一般的规律[1]性知识去对待多种题目,从而把课本从厚教到薄。
[图片0]
3数学整理方法二
基础理论学起:在学习数学前首先应该从最基础的东西开始学习,因为数学的每一个理论或者每一个环节都是以前一个基础理论为前提的,是环环相扣的理论链的关系。带着这种观点去学习也就不必去死记硬背一些定理、推理之类的知识了,学习起来自然就显得更加容易了!避免眼高手低:数学是一门理论联系实际的学习,熟悉、理解基础理论概念只是学好数学的前提,最终的目的还是用于实际的操作中,或者说用于咱们的日常生活中去。所以要勤于做题练习,坚决避免眼高手低的学习态度,“实践是检验真理的标准”,数学也不例外!
四大思维模式 :数学体系的四大思维体系:数形结合、函数思想、分类讨论、方程思想。在学习数学过程中要做到已知量和未知量的有机结合,用已知数值通过函数的方式和方程的形式展现出来,在未知待定的情况下,通过分情况的方式加以讨论并解析出问题的不同情况的答案!
4数学整理方法三
首先对整个知识体系的版块有一个基本认识,高考数学可分为以下板块:函数的基本题型、函数与导数、三角函数相关内容、平面向量和空间向量、立体几何、数列、不等式、解析几何初步、圆锥曲线、统计与概率,选修内容不同省份安排不一样:极坐标、不等式、平面几何等。
知道了整个知识体系框架,就可以考虑在这一个学期里把哪些板块安排在哪一个月、哪一周,同时参考老师带领复习的进度,互为补充。每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下,计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,六天(可能高三时期周六都要拿出一些时间给学习吧)时间每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。比如说,老师上周带我们复习了三角函数中与解三角形有关的内容,如果发现自己这些方面还有一些不会做的题或者不熟练的方法或者题型,就在资料上寻找相关的题目来试试,并且按时总结,找出这些题型的共同点,摸索高考命题方式。如果觉得自己在解三角形这些方面比较熟练了,就可以考虑赶在老师前面,把老师接下来要带着复习的方面先复习一遍。总之就是要使两个进度互为补充,这样才会一直有一个合理的顺序,不至于到了某一个星期就觉得乱了。最后的结果就是,别人是复习了一轮,而自己在同样的时间可以使自己的知识掌握更加牢固。
以上就是数学知识整理的方法的相关建议,希望能帮助到您!